
motion in the positive direction, or if the vessel is extended during motion in the negative 
direction (membrane 4 is connected to the fixed wall by means of filament 5). The body is 
displaced in the negative direction if during its motion in the positive direction the vessel 
is extended, or if it is compressed during its motion in the negative direction (membrane 4 
is connected to the fixed wall by means of filaments 6, 7 and batten 8). 

Figure 2a, b shows two series of snapshots demonstrating the motion of the body along 
the Z axis with respect to the vessel when prescribed matched oscillations and deformation 
are imposed on the vessel. In Fig. 2a, the body is displaced in the positive direction; in 
Fig. 2b, it is displaced in the negative direction. The distance between adjacent vertical 
subdivisions is 0.5 cm (these scale divisions are fixed with respect to the vessel). The 
framing frequency is 5 shots/sec. The amplitude and period of the vessel oscillation is 
0.3 cm and 0.25 sec, respectively. 

Comparison of results given here and those of [i] shows that the predominantly unidirec- 
tional motion of the compressible solid body and a gas bubble are qualitatively the same. 
The predominantly unidirectional motion of the compressibIe solid body can be explained in 
the same way as the analogous motion of a gas bubble (see [].2]). From this it may be con- 
cluded that there exists a phenomenon of predominantly unidirectional motion of a compres- 
sible inclusion in a vibrating liquid. 

The author wishes to thank D. G. Akhmetov for discussions of issues related to this work. 
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ANALYTICAL SOLUTION OF THE ONE-DIMENSIONAL PROBLEM OF MODERATELY 

STRONG EVAPORATION (AND CONDENSATION) IN A HALF-SPACE 

A. V. Latyshev and A. A. Yushkanov UDC 533.72+517.958 

We obtain for the first time an exact solution of the problem of evaporation (and con- 
densation) of a liquid occupying a half-space and evaporating into a vacuum. We use the 
one-dimensional Boltzmann equation with the collision operator in the BGK (Bhatnagar-Gross- 
Krook) form, linearized about the equilibrium distribution function far from the surface be- 
tween the phases. 

The history of this problem, for which there is no available analytical solution even 
in the linear formulation using the one-dimensional BGK equation, has been described in [i, 
2], where the exact solution of the problem was considered for so-called strong evaporation 
of a liquid into a vacuum. The problem was linearized about the equilibrium distribution 
function far from the surface of evaporation and the effect of the translational motion of 
the gas on its behavior in the Knudsen layer was taken into account in the linear approxima- 
tion. The escape velocity of the gas (and other parameters) appear nonlinearly in the dis- 
tribution function. This approach can be called quasilinear. In spite of its crudeness, 
it correctly describes a number of important qualitative features of evaporation such as 
the special position of the Mach number equal to unity. 

In [i] the problem was solved using the resolvent method, in [2] it was reduced to a 
boundary-value problem, and in [3] the methods of functional analysis were used to show that 

the problem has a solution when U < v~Y2-and does not have a solution when U ~ /-~. Here 
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U is the dimensionless velocity of the evaporating gas. The approximate F N method was used 
in [4]. Finally, the problem was solved in an abstract formulation in [5, Chap. III, Sec. 4]. 

We consider evaporation (condensation) into a vacuum of a liquid with a plane surface 
x = 0. The liquid occupies the half-space x > 0. We take the one-dimensional BGK equation 

a 
~ / ( x , ; ) =  ~l  r (x, ;) - / (x, ;)], ( l )  

where f(x, ~) is the distribution function; ~ is the molecular velocity in the x direction; 
is the collision frequency; and #(x, ~) is a local Maxwellian distribution 

p(z) p{ [~-- v(x)] ~ } 
(D(x, ~) -- V ~ )  ex 2nr  (x) " 

Here the density, mass velocity, and temperature are defined as 

p ( x ) =  ~ /(x,~)d~,p(x)v(x)= i ~f(x'~)d~" 

o(x) n T  (x) = ~ [~ - -  v(x)l ~ / (x ,  ~1 d~. 
- - o o  

We assume that far from the surface the state of the vapor is described by the equi- 
librium distribution with constant velocity of evaporation (condensation) v=, density p~, 
and temperature T~: 

P~ exp { ($- v~)~l. l i m ( 1 ) ( x , ; ) = / ~ ( ; ) -  g, zaRr ~ - -  2--~--~---. ~ 

Following [i], we linearize f(x, ~) and ~(x, r in f~(C). 
c = ~ - v~, we write 

/(z,  c) = l~(c) [t + h(x, c)], 

where 

Introducing the variable 

( 2 a )  

/o~ (C) - ]/-2n-n-~ (2b)  

Substituting (2a) into (i) and linearizing ~(x, ~) in f~(~), we obtain the equation 

i ,2 __ l e -"  q (u., ~,') h (5. ~' h ( x , . )  + h ( x , . )  = ' (3) 

with the boundary conditions 

h(O, ~) = - - 2 U ~ §  2 - t / 2 ) ,  9 > - - U ,  h(oo, >) = 0 .  (z,) 

Here q(>, >') = 1 + 2>>' + 2(> 2 - i/2)(> '2 - 1/2) is the kernel of the equation; x = 

vx(2RT~)-I/2; ~ = c(2RT~)-I/2; U = v~(2RT~)-I/2; s T and gn are the temperature and density 
jumps; U is the velocity of evaporation (U > 0) or condensation (U < 0). The variable x 
will be replaced by x. 

The Case ansatz [6] h(x, >) = g(n, D)exp(-x/(N + U)) immediately reduces (3) to the 
characteristic equation 

(rl --  P) q~ (~l, P) = (q -F U) ~ In (~ (q) ,-_2/an m Oq) -9 
v u  t (5) 
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where 

oo 

n (~) (N) = e -~ r (N, p) ~d~t (k = O, l,  2). 
--c,o 

Multiplying (5) by ~kexp(-~ 2) (k = 0.1) and integrating with respect to ~ in R = (-~, 
+co), we obtain 

n(a)(~l) = -Unr176  and n(2>(q) = - -Un(~)O1) .  

Then (5 )  can  be w r i t t e n  i n  t h e  fo rm 

(q - -  ~)qo(1], ~) ----- yC-1/2(~ -~ U ) q ( - - U ,  ~)n(~]). 
(6) 

Here q(-U, ~) = 1 - 2U~ + 2(U 2 - i/2)(~ 2 - I/2); n(n) ~ n(~ The characteristic equa- 
tion (6) has eigenfunctions of the continuous spectrum 

(p(~l ,~t)=~-l /2( i] 'U)q(__U, tt) p ,  I n (vl) -6 g (,1) 6 (q _ 9) ' ~q--p~ (7) 

where g(q) is determined from the normalization condition 

n (q) = ~ e - ~ r  (~, p) d~; 
--oo 

the symbol P ~ denotes the principal value of the integral of the function i/x; 6(x) is the 
x 

Dirac delta function; q and D e R. 

Substituting (7) into the above equation we have 

g (~) = e~ (~) n C~). (8) 

Here 

)~ (z) = I -6 ~-~/2 (z -6 U) i exp ( "  ~2) q (-- U, ~) d~ 
,u -- z 

is the dispersion function. 

It can be shown [7] that the dispersion function %(z) does not have finite complex 
zeros. We expand it in a Laurent series about z = ~: 

(9) 

We see from the expansion (9) that the point z = ~ is a third-order zero of the disper- 
sion function if U # 0 and U 2 # 3/2 and it is a fourth-order zero if U = 0 or U 2 = 3/2. 
This point (as a multiple point of the discrete spectrum) corresponds to the following dis- 
crete modes: 

h~(x, tO = ~=, ~ = O, 1, 2 ( i f  U =/= OandU~ =/= 3/2), (10)  
h3(x, ~) = ( x - -  U - -  ~)q(--U, ~) ( i f  U = O  or U S = 3 / 2 ) .  

Knowing the eigenfunctions of the continuous (7) and discrete (i0) spectra, the general 
solution of (3) is written as an integral over the continuous spectrum and a sum of discrete 
eigenfunctions: 

�9 

h (x, It) = ~ Aah~ (x, p) ~- ~ (q, tl) exp [-- x/( n + U)] dq. ( 11 ) 
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Here K = 2 for U 2 # 0, 3/2 and ~ = 3 for U 2 = 0, 3/2. The constants Aa (~ = 0, i, ..., ~) 
and the function n(q) are the expansion coefficients of the solution and are determined from 
the boundary conditions imposed on h(x, ~). 

Taking into account the boundary conditions (4), the expansion (i]) is reduced to the 
integral equation 

h(0, ~t)= ~ ~(n, ~0dq, i x > - u .  (12) 
--U 

Substituting (7) into (12), we obtain a singular integral equation with Cauchy kernel 

h(o, ,) = + ix) i ~t - u  
(].3) 

We note that 

and introduce the function 

~,+ (p) --  3.-- (ix) = 2~i/2 (it + U) e-~2q (- -  U, ix), 

t S ('q--~-U) n(r])d~ 1 N ( z )  = ~ ~ = ~  , 
--U 

for which we have on  the cut R v  = (-U, +~) 

(14) 

N+(Ix ) - -  N - ( p )  = (it -+- U)n(ix), 

| i (n -~- U) n (ri) d~l. N + (ix) -}- N -  (ix) = - ~  ~1 --  ~t 
- u  

Multiplying both sides of (13) by (~ + U)e-U 2, this equation reduces to the Riemann 
boundary-value problem [7] 

L+(IX)N+(IX) - -  ~-(IX)N-(IX) = (~ q- U) exp (--ix2)h(0, ~), ix > - - U .  (3.5) 

M u l t i p l y i n g  b o t h  s i d e s  o f  ( 1 5 )  b y  2 v l / Z i q ( - U ,  p )  a n d  u s i n g  t h e  b o u n d a r y  v a l u e s  o f  s  on  
t h e  r e a l  a x i s  f r o m  a b o v e  a n d  b e l o w ,  ( 1 5 )  i s  t r a n s f o r m e d  t o  

~+(ix) [2nV2iq( - U ,  ix)N+(p) - -  h(0, ix) l ~- 

= l-(tt)[2rd/2iq(--U, ix)N-(p) - -  h(0, ix)l, ix > - - U .  
(16) 

We consider the factorization of the coefficient of the boundary condition (16) [7]: 

x+ (g) = z+ (~) 
x- (~) z- (~)' ix> -- U. (17) 

Using (17), the boundary condition (16) is transformed to 

X+(P) [2al/2iq(--U, IX)N+(IX) - -  h(0, ix)] = 

= X-(ix)[2al/2iq(--U, IX)N-(IX) --  h(O, ix)I, ix > - - U .  
(18) 

The solution of (18) depends on the solution of (17) in an essential way. We consider 
the solution of (17) as a function of the parameter U. We note that 

--• - 4 - 2 U ~ + 1 > 0 ,  q ( - - U ,  O ) =  - -  U 2 -  . 
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The function q(-U, D) has two real roots 

u • VB (u) 
~1,2 - -  ( • 2 \U 2 -- 

Here D(U) = 2[(U ~ - 3/4) 2 + 3/].6] > 0. We also have 

~+(~) = ~(~) + g~/~i(~ + U)q(--U, ~) exp (_~2) .  

t .  S u p p o s e  U ~ ~ 3 / 2 .  Then t ( ~ )  < 0 when ~ + ~ .  I t  i s  n o t  d i f f i c u l t  t o  show t h a t  
[ 8 ( ~ ) ] R  u = 3 v ,  w h e r e  8 ( ~ )  = a r g ~ + ( ~ ) ,  a n d  [ 8 ( ~ ) ] a  v d e n o t e s  t h e  c h a n g e  i n  t h e  f u n c t i o n  8 ( ~ )  

when ~ goes from -U to +~. The solution of (17) which is bounded at z = -U is given by [7] 

- -  U 

It is now evident that (18) has only the trivial solution 

2n~/~iN(z) = h(O, z)/q(--U, z), 

which cannot be used for the function N(z) defined by (14), since this function is finite 
at infinity, whereas (14) vanishes at infinity. 

2. Suppose 0 5 U 5 ~/2. Here X(~) > 0 when ~ + ~. It can be shown that [0(g)I,u = 2~. 
The solution of (17) which is bounded at z = --U is given by [7] 

X (z) = (z + U) -2 exp [0 (~) -- 2n] ~ . 

--U 

The general solution of (18) is now 

2aa/2iN(z) = (h(O, z) + co/X(z))/q(--U, z) ( 1 9 )  

(c 0 is an arbitrary constant). The solution (19) is a meromorphic function, since q(-U, z) 
has two real zeros Di and ~2. The poles of N(z) at these points are eliminated by the con- 
ditions 

h(O,g~) + co/X(~:) = O, a = 1,2. ( 2 0 )  

The function N(z) vanishes at infinity if 

Co = - - e r ,  ( 2 1 )  

which fo]_lows by expanding the right hand side of (13) in a Laurent series in negative 
powers of z. 

Because N(z) is defined in the complex plane, its limiting values N• from above and 
below also have simple poles at the points ~i and p=. They are eliminated by imposing the 
four equations 

h(O, ~ )  + colX~(~) = O, a = i ,  2. ( 2 2 )  

We show that these conditions reduce to (20), i.e., they are satisfied automatically. We 
present without derivation the following integral representation for X(z): 

1 i ~* o (-- U, ~) dg, X (z) = ~--~ e -  "~ (V)~ ~ _----~ 

--U 

(23) 

where y(~) = (~ + U)X+(~)/X+(D). It is evident from (23) that because the density of this 
integral vanishes at ~I and ~2, the limiting values of the integral frols above and below 
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are equal to the values of the singular integral itself at these points. Hence X• = 

X(#~), a = i, 2, and (22) is satisfied automatically. 

The temperature and density jumps can be found from (20) and (21) as functions of the 
velocity of evaporation U: 

(,~ - ~.) x (,.) x (~..)+ X(~l)- x(~)  

~ = 2u,~ - ( ~  - ~/2 - ~ / x  (~.)) ~ .  

We consider the different cases of condensation. 

i. Suppose -v~72-< U < 0. Then I(D) < 0 when D + = and [8(~)] Ru 

solution of (17) which is bounded at z = -U can be taken as 

= n. Therefore the 

X (z) = (z + U)-1 exp + [0 (,) --  ~z] ~-z-z| 
- -  U 

Now the general solution of (18) is 

2n~/eiN(z) -= (h(O, z) + (co + qz) /X(z ) ) /q ( - -U,  z). 

From the condition that this solution must vanish at infinity we have c I = -s T and to 
eliminate the poles at #z and ~2 we must have X(p~)h(0, #~) + Co + cl#a = 0~ ~ = i, 2. Hence 

+ 2U [/~aX(v~) + ~t~X (~0)] -- e , , ( X ( ~ )  + X (~_~))}, 

er = 2U/(~q, ~t~, U ) -  e~g(~,  ~t~, U). 

Here 

/ =  [ ~ a X ( ~ , ) -  ~ , x ( ~ , ) ] / ~ ( ~ ,  m ,  u ) ; '  

g = ( x ( ~ o  x ( t t , ) ) @ ( ~ ,  ~ ,  u);  
2 ,p = t,, - ~,~ + x (t.O (~,, ~ - ~/2) - x ( r , , ) (~ , ,  - t /2 ) .  

2. Suppose U < --r Then q(-U, 
is not difficult to show that [8(T)]R U 

at z = --U is 

p) > 0 for all p ~ -U and l(p) > 0 when p + ~. It 
= 0. Therefore the solution of (17) which is bounded 

(C09 
infinity we find c 2 

- -U 

The general solution of (18) is then 

2all ' iN(z)  ~ [h(O, z) -+- (c o + clz + c~z2)/X(z)]/q(--U, z) 

e l ,  c2 a r e  a r b i t r a r y  c o n s t a n t s ) .  From t h e  c o n d i t i o n  t h a t  t h e  s o l u t i o n  must  v a n i s h  a t  
= -E T and to eliminate the poles we must have 

C 2 X ( ~ ) h ( O , ~ ) + c  0 + c l ~ +  2 ~ = 0 ,  ==1 ,2 ,~  

from hence 

Cl = ~.(tt~ + vt,) - [X(t ,3h(O, it,) - -  X(~t,)h(O, . . ) ] / ( . ,  - -  t~), 
1 

co = - T  { -  ~ ( .~  + t-.) + ~ (~,~ + . ~ )  - x (~,~) h (o, ~ )  - x (~,~) h (o, ~ ) 1 .  
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It follows from these last two equations that the three parameters U, ET, and e 0 are 

necessary to uniquely specify the solution to the condensation problem. 

Note. Our analysis shows that the evaporation and condensation problems are not sym- 
metric from both the physical and mathematical points of view. In the problem considered 
here a Mach number of unity corresponds to a velocity of evaporation (condensation) U = 

J3/2. It follows from our results that this value plays a crucial role in evaporation and 
condensation. The results of the numerical calculations of [8] correspond to steady-state 
condensation for different U. A special case of the problem treated here was considered in 
[9] (the condensation problem). After solving (17) for the factorization of the coefficient, 
the authors of [9] were not able to carry through the solution to completion. 

Finally we briefly describe the mathematical aspects of the method described here. The 
physical problem corresponds to solving a boundary-value problem for a simplified Boltzmann 
equation with a collision operator in the BGK form. The required physical quantities are 
contained in the boundary conditions. Separation of variables using the Case method leads 
to a characteristic equation whose eigenfunctions are generalized functions. Next the exis- 
tence and uniqueness of the expansion of the solution of the boundary-value problem in con- 
tinuous and discrete eigenfunctions is proved. The proof reduces to the solution of a singu- 
lar integral equation with a Cauchy kernel, and this is reduced to the solution of a Riemann 
boundary-value problem on a half axis. After factorization of the coefficient of the bound- 
ary-value problem the general solution of the problem is found. The solution depends on the 
velocity of evaporation (condensation) in an essential way. The required physical quantities 
are determined from the solvability conditions for the boundary-value problem. 
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